CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL

COORDENAÇÃO DE CURSO CURSO TÉCNICO DE MECÂNICA

"Montadora de pneus"

ALUNO: BRUNO H. BISPO
HELENA SOUZA DIAS
JHONATAN DOS SANTOS
YURI H. CORRÊA
PROFESSOR:DÉLCIO PERON
DISCIPLINA PROJETOS MECÂNICOS

CURITIBA 2017

CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA COORDENAÇÃO DE CURSO CURSO TÉCNICO EM MECÂNICA

"MONTADORA DE PNEUS"

ALUNO: BRUNO H. BISPO
HELENA SOUZA DIAS
JHONATAN DOS SANTOS
YURI H. CORRÊA
PROFESSOR: DÉLCIO PERON
DISCIPLINA PROJETOS MECÂNICOS

CURITIBA 2017

BRUNO H. BISPO HELENA SOUZA DIAS JHONATAN DOS SANTOS YURI H. CORRÊA

"MONTADORA DE PNEUS"

Trabalho Acadêmico apresentado ao Centro Estadual de Educação Profissional de Curitiba / Disciplina projetos mecânicos / Coordenação curso técnico, pelos alunos Bruno H. Bispo, Helena Souza Dias, Jhonatan dos Santos e Yuri H. Corrêa, orientado pelo Professor Délcio Peron como requisito para a conclusão Parcial do curso técnico em mecânica.

PROFESSOR: DÉLCIO PERON DISCIPLINA PROJETOS MECÂNICOS

SUMÁRIO

1 INTRODUÇÃO	. 4
2 DESENVOLVIMENTO	4
2.1 PESQUISA	. 5
2.2 DESENHO TÉCNICO	6
2.3 SOLIDWORKS	7
2.4 PROTÓTIPO	8
2.5 PINTURA E ACABAMENTO	9
3 CONCLUSÕES	10
4 ANEXOS	11

1 INTRODUÇÃO

A montadora de pneus é um equipamento indispensável para estabelecimentos que trabalha com pneus em geral. Ela é utilizada para desmontagem e montagem de pneus do aro 13" ao 19", esse serviço é procurado quando fura um pneu ou precisa-se colocar um pneu novo, e isso é feito pelo o operador com menos esforço físico e com menos tempo.

2 DESENVOLVIMENTO

A Máquina Montadora de pneus foi criada para agilizar o tempo de trabalho e qualidade no setor automotivo. Apesar de já existir no mercado máquinas similares, pesquisamos e desenvolvemos uma montadora de pneus com alguns diferenciais, um desses diferenciais é a engenharia reversa, que falaremos ao decorrer do projeto. Ela também traz tecnologias pneumáticas para o acionamento do sistema de deslocamento do pneu e também um sistema simples para o acionamento do motor elétrico através de uma pedaleira localizada a frente da máquina. Vale lembrar que a ergonomia do trabalhador é de extrema importância, por isso modificamos a altura do equipamento, para que em trabalhos repetitivos não ocasione lesões ao trabalhador. Com esse sistema pneumático de deslocamento o trabalhador não realiza esforços como no sistema manual.

Utilizamos a engenharia reversa, ou seja, observando o funcionamento da máquina, e a atividade do trabalhador. Concluímos que elevando a altura do equipamento ficaria melhor ergonomicamente, não só para o trabalhador, más para o espaço interno, facilitando a manutenção quando necessário.

2.1 PESQUISA

Saímos para uma pesquisa de campo para obter informações e conhecimentos sobre a máquina, para tentar corrigir e/ou melhorar o funcionamento e ergonomia de operação, e também, sem esquecer a segurança do trabalhador.

Entrevistamos o operador Alexandre de uma borracharia na cidade de Colombo (região metropolitana de Curitiba) chamada S.O.S Moto Peças e Borracharia na qual havia uma montadora de pneus, e obtivemos informações cruciais para melhorias, aplicação da engenharia reversa e upgrades no equipamento. As melhorias aplicadas foram, como já citadas a ergonomia (altura de trabalho), e também notamos que o motor com potencia de 1cv (cavalo-vapor), quando solicitado um esforço extra parava devido a falta de potencia. Visando facilitar e agilizar o trabalho, utilizaremos um motor de potencia maior e como a montadora de pneus atenderá tamanhos de aro 13" ao 19" polegadas, não poderemos deixar que o equipamento falhe ou perca a potencia em trabalhos que se encontre um pouco mais de dificuldade.

Figura 1: máquina montadora de pneus Fonte: CEMB

2.2 DESENHO

Após pesquisarmos a fundo e conhecer a montadora de pneus, partimos para o segundo passo, extrair as medidas necessárias para o início de nosso projeto. Foram tiradas as medidas com extremo cuidado e precisão para evitar erros e complicações no desenho como: furos fora de centro e/ou em locais sem exatidão, peças desalinhadas ou de tamanhos insuficientes, diâmetros furos maiores ou menores que ocasiona folga no eixo ou o travamento do mesmo e etc...

Desenhamos peças uma a uma em folha A4. Foram ao todo 15 peças, dentre elas estão: caixote, tampa lateral do caixote, tampa de cima do caixote, pedaleira, braço fixo, braço móvel, mola do sextavado, sextavado, bico de pato, suporte lateral para o deslocador, suporte para apoio do pneu, prato giratório, 4 garras e o eixo.

Foram necessárias por volta 6 aulas (20 horas) e 4 discentes para se concluir os desenhos. Encontramos dificuldades em medidas, centralização e alinhamento no desenho, mais com persistência e ajuda não só do professor mais também dos próprios integrantes, concluímos a segunda etapa.

2.3 SOLIDWORKS

Depois de corrigido os desenhos pelo professor de Projetos Mecânicos Delcio Peron, partimos para fabricação das peças no programa SolidWorks 2007. Seguindo à risca as medidas já feitas anteriormente, desenhamos as peças para nossa máquina, não foi fácil devido a complexibilidade e angulação de certas peças, depois de terminado as peças e os acessórios, cotamos todas as medidas para que fosse possível transferir para o modo de vista em 2D.

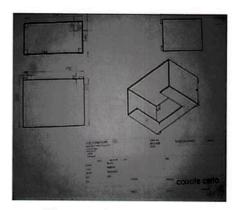


Figura 2: desenho em 2D Fonte: SolidWorks 2007

Em seguida, de uma em uma montamos o equipamento no software SolidWorks 2007, desde o caixote ao último parafuso, essa montagem requer tempo e o auxílio dos integrantes do grupo.

Após terminar a montagem da máquina no software SolidWorks 2007, o próximo desafio seria a fabricação do protótipo que veremos a seguir.

Figura 3: protótipo Fonte: SolidWorks 2007

2.4 PROTÓTIPO

Como o protótipo é o exemplar mais próximo do que será fabricado, ele é fundamental, porque nele será realizado os mais diversos tipos de testes, esforços, e também é onde será demonstrado o que ele é capaz de fazer.

Em nosso protótipo decidimos utilizar como matéria-prima: chapa de madeirite, rolamento, caibros, canos de PVC, grampos e pregos para fixá-las. Inicialmente começamos produzindo o caixote, fizemos a estrutura com tábuas de madeira, depois foi introduzido as chapas de madeirite para revestir e dar forma ao caixote, (vale lembrar que foi seguido à risca as medidas que foram desenhadas inicialmente no programa), após essa etapa fizemos a tampa do caixote para que em seguida fizéssemos o braço fixo que será apoiada em cima do mesmo, com o caibro de 10x4 em mãos, cortamos na medida exata e o fixamos em cima da tampa. Para representar o ângulo de trabalho do braço móvel, utilizamos outro caibro e o prendemos no braço fixo com uma dobradiça de porta, ficou como o esperado, mais antes desse processo de montagem do braço móvel, o mesmo foi furado na bancada com diâmetro de 1 polegada para que a haste sextavada pudesse também ser montada.

Figura 4: protótipo

Fonte: própria

Já o prato giratório foi feito com três chapas de madeirite de 8mm para ficar reforçada, porque nela será colocada as garras que suportará o conjunto (roda e pneu). O suporte de apoio para o pneu foi feito em cano PVC, e ficou localizado na lateral do equipamento alinhado com o deslocador, o deslocador pneumático foi representado com uma garrafa PET de 2L acoplada ao braço fixo. A mola da haste sextavada foi representada por um fio de característica espiral que fica apoiada sobre o braço móvel.

Como os tubos de liga aço-carbono são fabricados em medida padrão, não obtivemos representação exata do braço fixo e braço móvel do equipamento.

2.5 PINTURA E ACABAMENTO

Concluído a etapa de fabricação e montagem, partiremos para o acabamento e pintura do protótipo, para isso foram foi utilizado três tipos cores: vermelho para a pintura do caixote, cinza para a tampa do caixote, prato giratório braço fixo e móvel e haste paralela do suporte de apoio para o pneu, e o branco para as garras e para o suporte lateral de apoio do pneu.

Figura 5: protótipo Fonte: própria

3 CONCLUSÕES

A montadora de pneus trará muitos benefícios como: agilidade na desmontagem e montagem do pneu, rápido lucro, ela serve para uma simples borracharia até uma mecânica de auto padrão. Nós estudamos e avaliamos o custo de fabricação do equipamento, e concluímos que é viável comercialmente, pois o custo de fabricação não chegará nem a metade do valor de mercado. Melhoramos a ergonomia, ou seja, a posição que o operador executa o trabalho, aumentamos a altura, pois assim, no decorrer do trabalho não traga lesões ou desgaste à coluna.

4 ANEXOS

ANEXO 01:

Figura 1: Montadora de pneus Fonte: CEMB

ANEXO 02:

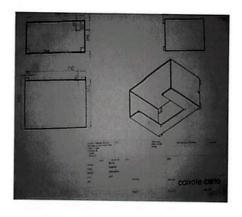


Figura 2: desenho em 2D Fonte: Própria

ANEXO 03:

Figura 3: Protótipo Fonte: SolidWorks 2007

ANEXO 04:

Figura 4: Protótipo Fonte: Própria

ANEXO 05

Figura 5: protótipo Fonte: Própria

REFERENCIAS BIBLIOGRÁFICAS

- JM Máquinas, 2017.
- Loja do Mecânico, 2017.
- S.O.S Moto peças e Borracharia, Alexandre, 2017.
- Borracharia Delta, 2017.
- Elementos de Máquinas, Sarkis Melconian, 9ª edição, 2009.

PROFESSOR / DISCIPLINA:		
p		
DEFERIMENTO / NOTA:		
LOCADO / COORDENAÇÃO:		
OBSERVAÇÕES TÉCNICAS:		
PARECER / ASSINATURAS / AU	TENTICAÇÕES:	
	Curitiba,	_ de
1		